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Abstract. We present a new stability phenomenon for Kronecker coefficients, that we
call hook stability: the Kronecker coefficients stabilize if we add cells to the first row
and first column of each of the indexing partitions, simultaneously. We also show that
when we increase the sizes of the first two rows of their three indexing partitions, in
some appropriate way, the Kronecker coefficients grow linearly, and we are able to give
asymptotic estimates.

Résumé. Nous présentons une nouvelle propriété de stabilité des coefficients de Kro-
necker, que nous appelons stabilité équerre: les coefficients de Kronecker se stabilisent
lorsqu’on ajoute des cases dans la première ligne et première colonne des diagrammes
de chacune de leurs trois partitions, en même temps. Nous montrons aussi que
lorsqu’on augmente les deux premières parts des trois partitions, d’une façon con-
trôlée, alors les coefficients de Kronecker croissent linéairement. Nous réussissons à
donner des estimations asymptotiques dans ce cas.
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1 Introduction

The Kronecker coefficients gλ,µ,ν are fundamental constants in representation theory.
They describe how irreducible representations of GL(V ⊗W) split when viewed as rep-
resentations of GL(V) × GL(W). They are also the structural constants for the tensor
products of irreducible representations of the symmetric groups.

In spite of their importance, little is known about the Kronecker coefficients, leaving
some fundamental questions unanswered. For example, no combinatorial description
akin to the Littlewood–Richardson rule is known for the Kronecker coefficients. An-
other important question is to determine how difficult it is, algorithmically, to compute
Kronecker coefficients, or to merely determine which are nonzero.
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A feature of the Kronecker coefficients that has been studied recently is the stabil-
ity phenomena: the fact that some sequences of Kronecker coefficients are eventually
constant. The first example of such behavior was observed by Murnaghan [13] in 1938.
The Kronecker coefficients gλ,µ,ν are indexed by triples of partitions (λ, µ, ν), and Mur-
naghan’s stable sequences are obtained by incrementing the first part of all three par-
titions at each step. Their limit values (the reduced, or stable Kronecker coefficients) are
interesting objects in their own right.

Many more sequences of Kronecker coefficients are stable. Large families have been
produced by means of methods from geometry [10, 11], enumerative combinatorics [20,
19], or recently by symmetric functions calculations [14]. These stable sequences of Kro-
necker coefficients have general terms of the form gλ+nα,µ+nβ,ν+nγ, where Murnaghan’s
case corresponds to α = β = γ = (1). The sequences of Kronecker coefficients of the
form gλ+nα,µ+nβ,ν+nγ that are stable have been completely characterized recently in [16,
17].

In this paper, we present two new results related to the stability of Kronecker coeffi-
cients.

The first one (Section 3) is indeed a result of stability, but the sequences that we con-
sider are not of the type gλ+nα,µ+nβ,ν+nγ. At each step, we simultaneously increase the
first row and the first column of the Young diagrams of all three indexing partitions.
We call this phenomenon hook stability. This hook stability does not seem to fit straight-
forwardly in the representation theory of fixed general linear groups, since it involves
sequences of Kronecker coefficients indexed by partitions with unbounded lengths.

The second result (Section 4) concerns the asymptotics of some sequences of Kronecker
coefficients of type gλ+nα,µ+nβ,ν+nγ that do not stabilize, but grow linearly.

We describe the relevant coefficients (the limits for hook stability, and the coefficients
appearing in quasi-polynomial formulas for the asymptotic estimates, for the result on
linear growth) by means of generating series (Section 6).

All these results are derived from a simple factorization of a formal series of sym-
metric functions (Section 5), obtained by computations in the framework of the λ–ring
formalism for symmetric functions, and involving vertex operators. The two sets of
results in this paper, hook stability and linear growth, are obtained by first consider-
ing these properties for families of reduced Kronecker coefficients, and then translating
them to Kronecker coefficients.

Most of the proofs of the results in this extended abstract are skipped or merely
sketched; the full proofs are given in the complete version [2]. Full bibliographical
references can also be found there.
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2 Preliminaries

Partitions. We will use the following notation for integer partitions. The weight |λ|
of the partition λ is the sum of its parts. The conjugate of a partition λ is denoted by
λ′. Let ∪ and + be the standard operations on partitions, as defined in [9, I.§1]. If n
is a nonnegative integer and λ = (λ1, λ2, . . . , λk) is a partition, then nλ is the dilation
of λ by a factor n and has parts (nλ1, nλ2, . . . , nλk). Let λ be the partition obtained by
removing the first term of λ. Let λ̂ be the partition obtained after removing the first row
and the first column in the diagram of λ. The sequence defined by prepending a first
term a to the partition λ will be denoted (a, λ). The resulting sequence (a, λ1, λ2, . . .) is
not necessarily a partition since we may have that a < λ1. Finally, for any non–empty
partition λ, we will write λ⊕ (a|b) for the partition λ + (a) ∪ (1b).

For example, if λ = (8, 3, 3, 1), then we have that λ = (3, 3, 1), λ̂ = (2, 2), (5, λ) =
(5, 8, 3, 3, 1) (not a partition), and λ⊕ (7|4) = (15, 3, 3, 1, 1, 1, 1, 1).

Reduced Kronecker coefficients and Murnaghan’s stability. As mentioned in the in-
troduction, Murnaghan observed in [13] that for any triple of partitions λ, µ, ν of some
positive integer n, the sequence of Kronecker coefficients gλ+(m),µ+(m),ν+(m) stabilizes (i.e.
is eventually constant). Several proofs have been given of this fact. The original one is
due to Littlewood [8].

The stable value of the sequence gλ+(m),µ+(m),ν+(m) does not depend on the first part
of λ, µ and ν. Accordingly, it will be denoted gλ,µ,ν, and called the reduced Kronecker
coefficient (some authors called it also stable Kronecker coefficient).

3 Reduced Kronecker coefficients with first column incre-
ment, and hook stability for Kronecker coefficients

In what follows, “if x � y” means “there exists k such that, if x ≥ y + k . . . ”.
The following theorem is a new column stability property for reduced Kronecker

coefficients.

Theorem 1. For any triple of partitions α, β, γ, there exists an integer gα,β,γ such that whenever
a ≥ `(α), b ≥ `(β), c ≥ `(γ), and b + c� a, a + c� b and a + b� c, we have

gα+(1a),β+(1b),γ+(1c) = gα,β,γ.

Combining the result in Theorem 1 with Murnaghan stability, we obtain that the
Kronecker coefficients are stable when we increase the first row and first column of the
three indexing partitions simultaneously. We call this property hook stability for Kronecker
coefficients, since it appears when increasing, in some balanced way, the main hook in
the three indexing partitions.
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Corollary 1. For any triple of non–empty partitions λ, µ, ν of the same weight, for all
(a, b, c, m) ∈ N4 with m ≥ a, b, c, m � (a + b + c)/2, a + b � c, a + c � b and b + c � a,
we have

gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c) = gλ∪(1a),µ∪(1b),ν∪(1c) = g
λ̂,µ̂,ν̂. (3.1)

Example 1. Table 1 presents the Kronecker coefficients gλ⊕(i|j),λ⊕(i|j),λ⊕(i|j) for λ = (3, 3)
and i and j between 0 and 9. Each column of the table is stable because of Murnaghan’s
stability, Each row is eventually zero by a classical result on the vanishing of the Kro-
necker coefficients. The region in gray with value 145 corresponds to a “hook stable”
region.

HHH
HHHHi

j
0 1 2 3 4 5 6 7 8 9

0 0 1 5 5 1 0 0 0 0 0
1 1 8 27 40 30 11 1 0 0 0
2 1 15 53 89 91 64 33 11 1 0
3 2 19 62 108 129 122 97 64 33 11
4 2 19 63 112 138 141 135 122 97 64
5 2 19 63 112 139 145 144 141 135 122
6 2 19 63 112 139 145 145 145 144 141
7 2 19 63 112 139 145 145 145 145 145
8 2 19 63 112 139 145 145 145 145 145
9 2 19 63 112 139 145 145 145 145 145

Table 1: The Kronecker coefficients g(3,3)⊕(i|j),(3,3)⊕(i|j),(3,3)⊕(i|j).

As a very particular case, we obtain the following corollary.

Corollary 2. Let λ, µ and ν be non–empty partitions of the same weight. The sequence of
Kronecker coefficients gλ⊕(n|n),µ⊕(n|n),ν⊕(n|n) stabilizes to g

λ̂,µ̂,ν̂.

4 Reduced Kronecker coefficients with first rows incre-
ment

When increasing the first row of the three indexing partitions α, β, γ of a reduced Kro-
necker coefficient gα,β,γ, i.e. when considering a sequence of coefficients gα+(m),β+(m),γ+(m),
the sequence does not stabilize. But the same techniques as those used for hook stability
provide a rather precise description of the asymptotic behavior of the sequence: it grows
linearly with coefficients that are quasipolynomials of period at most 2.

We in fact obtain the following more general theorem, where the first parts of the
three partitions do not have to be increased by exactly the same amount.
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Theorem 2. Let α, β and γ be three partitions. There exists integers Aα,β,γ, Bα,β,γ and Cα,β,γ,
such that whenever a ≥ α1, b ≥ β1, c ≥ γ1, a� b, a� c and b + c� a, we have

g(a,α),(b,β),(c,γ) =
1
2

Aα,β,γ · (b + c− a) + Bα,β,γ +

{
0 if b + c− a even,

Cα,β,γ/2 if b + c− a odd.

We get another related result. Let C be the cone of all (a, b, c) ∈ R3 such that a+ b ≥ c,
a + c ≥ b and b + c ≥ a.

Theorem 3. Let λ, µ and ν be three partitions and (a, b, c) ∈N3. Without loss of generality, we
may assume that max(a, b, c) = a. Suppose that there exists n such that gλ+n(a),µ+n(b),ν+n(c) is
non–zero. Then Aλ,µ,ν is nonzero, and if (a, b, c) is in the interior of C, then, as n→ ∞,

gλ+n(a),µ+n(b),ν+n(c) ∼
Aλ,µ,ν · (b + c− a)

2
· n.

From known properties of Kronecker coefficients, one shows easily that if (a, b, c) is
on the border of C, then gλ+n(a),µ+n(b),ν+n(c) is eventually constant. And if (a, b, c) 6∈ C,
then gλ+n(a),µ+n(b),ν+n(c) = 0 for n� 0.

From Theorems 2 and 3 are derived similar statements for Kronecker coefficients
whose indexing partitions fulfill linear inequalities guaranteeing that they are equal to
the corresponding reduced Kronecker coefficients; see [2].

5 Sketch of the proofs

The proofs of the properties presented in Sections 3 and 4 are based on a factorization
lemma for some formal series of symmetric functions. We introduce below some material
on symmetric functions useful for stating this lemma. In particular, the generating series
σ of the complete symmetric functions hn and the λ–ring formalism will be useful as
well in Section 6 to describe the coefficients gα,β,γ, Aα,β,γ, Bα,β,γ and Cα,β,γ of Sections 3
and 4.

5.1 Preliminaries on symmetric functions

Symmetric functions. Let SymQ = SymQ(X) be the algebra of symmetric functions
with rational coefficients, with underlying alphabet X = {x1, x2, . . .}. We denote by
〈 | 〉X, or 〈 | 〉 when there is no ambiguity, the scalar product on SymQ where the Schur
functions form an orthonormal basis. The scalar product is conveniently extended to
symmetric series whenever it makes sense. We also consider symmetric functions in dif-
ferent alphabets (sets of variables) X, Y, Z. The scalar product is canonically extended to
the algebras SymQ(X)⊗Q SymQ(Y) or SymQ(X)⊗Q SymQ(Y)⊗Q SymQ(Z), for example,
and denoted by 〈 | 〉X,Y and 〈 | 〉X,Y,Z.
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The λ–ring formalism for symmetric functions, and specializations. Let A be any
commutative algebra over a field K of characteristic zero. Given a morphism of algebras
A from SymQ to A, the image of a symmetric function f under A will be denoted with
f [A] rather than A( f ), and is called the “specialization of f at A”.

Since the power sum symmetric functions pk (k ≥ 1) generate SymQ and are alge-
braically independent, the map A 7→ (p1[A], p2[A], . . .) is a bijection from the set of all
morphisms of algebras SymQ → A to the set of infinite sequences of elements from A.
This set of sequences is endowed with its operations of component-wise sum, product,
and product by a scalar. The above bijection is used to lift these operations to the set of
morphisms SymQ → A. This defines expressions like f [A + B], f [−A], f [AB], f [A/B]
etc. where f is a symmetric function and A and B are two specializations, and more
general expressions f [P(A, B, . . .)], where P(A, B, . . .) is a rational function in several
specializations A, B . . . with coefficients in K.

Here are some important specializations. The specialization at −1 is defined on
power sums by pk[−1] = −1 for all k. The specialization ε is defined by pk[ε] = (−1)k

for all k. The product of the two previous specializations is −ε and fulfills pk[−εX] =
(−1)k+1pk[X] for all k. As a consequence, the transformation f [X] 7→ f [−εX] coincides
with the standard involution defined by sλ 7→ sλ′ for all partitions λ. There is also the
specialization X⊥ such that for any symmetric function f , f [X⊥] = f⊥, the adjoint of the
multiplication by f with respect to 〈 | 〉X.

The series σ. Let σ be the generating function for the complete homogeneous symmet-
ric functions in X:

σ[X] = ∏
i

1
1− xi

= ∑
n≥0

hn[X].

Let Y and Z be additional alphabets. The following identities are well known, except for
the last one.

• Cauchy’s identity:

σ[XY] = ∏
i,j

1
1− xiyj

= ∑
λ

sλ[X]sλ[Y].

• A generating series for the Kronecker coefficients:

σ[XYZ] = ∏
i,j,k

1
1− xiyjzk

= ∑
λ,µ,ν

gλ,µ,νsλ[X]sµ[Y]sν[Z]. (5.1)

• A similar generating series for the Littlewood–Richardson coefficients:

σ[XY + XZ] = ∏
i,j

1
1− xiyj

1
1− xizj

= ∑
λ,µ,ν

cλ
µ,νsλ[X]sµ[Y]sν[Z].
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• A generating series for the reduced Kronecker coefficients, that can be derived (see
[2]) from a formula due to M. Brion [3, §3.4, Corollary 1]:

σ[XYZ + XY + XZ + YZ] = ∑
λ,µ,ν

gλ,µ,νsλ[X]sµ[Y]sν[Z]. (5.2)

5.2 The Factorization Lemma

The proofs of the results presented in the paper are based on a simple factorization of a
formal series. Consider six alphabets X, Y, Z, X′, Y′, Z′, and associate to any polynomial
F in three variables and to any three partitions α, β, γ the formal series

Φα,β,γ =
〈

σ[F(X, Y, Z)]
∣∣∣ Γ(X′|X)sα[X]Γ(Y′|Y)sβ[Y]Γ(Z′|Z)sγ[Z]

〉
X,Y,Z

(5.3)

where Γ(X′|X) = σ[X′X]σ
[
− 1

X′X
⊥
]
. The operator Γ(X′|X) is a convenient generalization

of the vertex operator Γ(t|X) = σ[tX]σ
[
−1

t X⊥
]
(where t is a variable) that sends any

Schur function sα to the series ∑n∈Z s(n,α)tn. When λ = (n, α) is not a partition, i.e. when
n is less than the first part of α, sλ should be interpreted as the Jacobi–Trudi determinant
det(hλj+i−j)i,j=1...n. The vertex operator Γ(t|X) is a classical tool in the theory of symmetric
functions used, in particular, by Jing (see, for instance, [7]), and, for the study of various
phenomena of stability by Thibon and his collaborators (see for instance [4, 18]). It is
also the generating series for Bernstein’s creation operators introduced by Zelevinsky.

The series Φα,β,γ is a formal sum of products of symmetric functions in X, Y, and
Z and elements of L(X′)⊗Q L(Y′)⊗Q L(Z′), where L is the Q-algebra obtained from
SymQ by adjoining an inverse to each power sum pk.

The factorization property is the following.

Lemma 1. For any partitions α, β and γ, there exists an element Qα,β,γ of L(X′)⊗Q L(Y′)⊗Q

L(Z′) such that
Φα,β,γ = σ[F(X′, Y′, Z′)] ·Qα,β,γ.

Thus, Qα,β,γ is the coefficient of sα[X]sβ[Y]sγ[Z] in the expansion in the Schur basis of σ[H] (as
a symmetric series in X, Y and Z), where

H = F(X + X′, Y + Y′, Z + Z′)− F(X′, Y′, Z′)− X/X′ −Y/Y′ − Z/Z′.

The main point of this lemma is that Qα,β,γ has only finitely many non–zero homo-
geneous components.

5.3 Specializations

The main results of this paper are obtained by the following convenient specializations
of Φα,β,γ. Murnaghan’s stability can also be recovered in this way.
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Murnaghan stability. Applying Lemma 1 with F(X, Y, Z) = XYZ, and specializing X′

at t and Y′ and Z′ at 1, we get that

σ[t] · P(t) = 1
1− t

· P(t) = ∑
n

g(n−|α|,α),(n−|β|,β),(n−|γ|,γ)t
n + terms tn with small n.

with P(t) a Laurent polynomial. This is Murnaghan’s stability. Indeed, a sequence
whose generating series is a polynomial P(t) times 1/(1− t) is eventually constant with
limit value P(1). Setting t = 1, we get the limit value (which is the reduced Kronecker
coefficient gα,β,γ) as the coefficient of sα[X]sβ[Y]sγ[Z], in the expansion in the Schur basis,
of σ[(X + 1)(Y + 1)(Z + 1)− 1− X − Y − Z], which simplifies to σ[XYZ + XY + XZ +
YZ]; this is the symmetric form (5.2) of Brion’s Formula.

Column stability for reduced Kronecker coefficients. If we apply Lemma 1 with
F(X, Y, Z) = XYZ + XY + YZ + XZ, and specialize all three alphabets X′, Y′ and Z′

to −εx, −εy and −εz respectively, (with x, y and z single variables, and −ε the main
involution on symmetric functions, that sends sλ to sλ′), we get

1 + xyz
(1− x)(1− y)(1− z)

Q−α,β,γ(x, y, z) = ∑
a,b,c

gα+(1a),β+(1b),γ+(1c)x
aybzc

+ terms xaybzc with small a, b, c.

(5.4)

with Q−α,β,γ a Laurent polynomial. Then the column stability for reduced Kronecker
coefficients is a consequence of this factorization and the fact that

1 + xyz
(1− x)(1− y)(1− z)

= ∑
(a,b,c)∈C∩N3

xaybzc

where C is the cone of R3 defined by a + b ≥ c, a + c ≥ b, b + c ≥ a. The contribution
of each monomial ma,b,cxaybzc of Q−α,β,γ, to the generating series (5.4), is ma,b,c · ∑ xpyqzr

where the sum is over all (p, q, r) in the translation of C by vector (a, b, c). For all (p, q, r)
in the cone intersection of all these translated cones (there are finitely many of them,
since Q−α,β,γ is a polynomial), the coefficient of xpyqzr in the generating series is ∑ ma,b,c,
which is Q−α,β,γ(1, 1, 1), and does not depend on p, q, r.

Linear growth for reduced Kronecker coefficients, under first part increment. Last, if
we apply Lemma 1 with F(X, Y, Z) = XYZ + XY + YZ + XZ, and specialize all three
alphabets X′, Y′ and Z′ to a single variable x, y and z respectively, we get a factorization

1
(1− xyz)(1− x)(1− y)(1− z)

Q+
α,β,γ(x, y, z) = ∑

a,b,c
gα+(a),β+(b),γ+(c)x

aybzc

+ terms xaybzc with small a, b and c.
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with Q+
α,β,γ a Laurent polynomial. Row stability for reduced Kronecker coefficients is

then derived in a similar way to column stability, but now the factor of the Laurent
polynomial is

1
(1− xyz)(1− x)(1− y)(1− z)

=

∑
(a,b,c)∈C

(
1 +

[
min(a + b− c, a + c− b, b + c− a)

2

])
xaybzc,

which is at the origin of the asymptotic quasipolynomiality and linear growth.

6 Generating series

Four families of constants were defined in the previous sections: the limits gα,β,γ under
hook stability (Section 3) and the coefficients Aα,β,γ, Bα,β,γ and Cα,β,γ appearing in the
quasi-polynomial formulas of Section 4. We get, as a byproduct of our proofs, generating
series for these constants, in the style of those of Section 5.1.

Theorem 4. Let α, β, γ be three partitions. Let X, Y and Z be three alphabets. Set W =
XY+XZ+YZ+X +Y+Z. Denote χ = ∑∞

n=1 pn, the formal sum of all power sum symmetric
functions. Then, for all triples of partitions α, β and γ, the constants gα,β,γ (in Theorem 1) and
Aα,β,γ, Cα,β,γ, and Bα,β,γ (in Theorem 2), are the coefficients of sα[X]sβ[Y]sγ[Z] in the expansion,
in the Schur basis, of, respectively,

σ [XYZ + (1− ε)W] , σ[XYZ + 2W], σ[XYZ + (1 + ε)W],

and σ[XYZ + 2W] ·
(

3
4
+

1
4

σ[(ε− 1)W]− 1
2

χ[W] + χ[YZ− X]

)
.

Example 2. One can derive from Theorem 4 the following formulas for the coefficients
in the paper, when two of the three indices are the empty partition ∅.

A(α1,α2),∅,∅ = α1 − α2 + 1,

C(α1,α2),∅,∅ =

{
(−1)α2 if α1 ≡ α2 (mod 2),

0 otherwise,

B(α1,α2),∅,∅ is the nearest integer to− 3 · (α1)
2 − (α2 − 1)2

4
,

and, when (α1, α2) is not the empty partition,

B∅,(α1,α2),∅ is the nearest integer to− 3 · (α1 − 1)2 − (α2 − 2)2

4
.
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Similarly, one derives that

gα,∅,∅ =


2 if α is a hook,
1 if α = ∅,
0 otherwise.

7 Final remarks

Geometric interpretation of the generating series. The Schur generating series in the
paper have straightforward geometric interpretations. Take any three finite–dimensional
complex vector spaces X, Y and Z. Then (5.1) means that, when the lengths of α, β

and γ are at most the dimension of X, Y and Z respectively, the Kronecker coefficient
gα,β,γ is the multiplicity of the irreducible representation Sα(X)⊗ Sβ(Y)⊗ Sγ(Z), of the
group GL(X) × GL(Y) × GL(Z), in the symmetric algebra over X ⊗ Y ⊗ Z. Similarly,
(5.2) means that the reduced Kronecker coefficient gα,β,γ is the multiplicity of the same
irreducible representation in the symmetric algebra over

(X⊗Y⊗ Z)⊕ (X⊗Y)⊕ (Y⊗ Z)⊕ (X⊗ Z).

The other generating series in Theorem 4 have similar interpretations.

Alternative approach to hook stability, through Murnaghan’s stability and symmetries
of Kronecker coefficients. Is there a simpler approach to hook stability (Corollary 1)
based only a clever use of the well–known symmetry properties of the Kronecker coeffi-
cients,

gλ,µ,ν = gλ′,µ′,ν = gλ′,µ,ν′ = gλ,µ′,ν′

and of Murnaghan’s stability? It seems that this leads only to a weaker result of hook
stability "modulo 2", see [2, Section 5.3] and the appendices. This approach also suggests
the following interesting conjecture:

Conjecture. For any three partitions λ, µ and ν of the same weight,

gλ,µ,ν ≤ gλ⊕(1|1),µ⊕(1|1),ν⊕(1|1).

Bounds for stability. Our methods also provide explicit bounds for when the stability
of Section 3, and the quasi–polynomial formulas of Section 4, hold. See [2].

Alternative approach through Hilbert series. S. Sam has recently announced [15] that
he can derive some of our main results by interpreting the generating series of Section 5.2
as Hilbert series of suitable finitely-generated modules, from which the Hilbert series of
the base ring can be factored out.
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Adding cells to other rows. The rate of growth experienced by the Kronecker coef-
ficients and the reduced Kronecker coefficients as we add cells to remaining rows is
difficult to understand. Some particular instances of this problem have been studied in
the literature.

For any fixed partitions λ, µ, ν, the stretched Kronecker coefficients gkλ,kµ,kν are known
to be quasi-polynomial in k. Results on this can be found in the work of Manivel [11],
Mulmuley [12], and Baldoni and Vergne [1]. This property is inherited by the reduced
Kronecker coefficients.

When |λ| = |µ| + |ν|, the reduced Kronecker coefficient gλ,,µ,ν coincides with the
Littlewood-Richardson coefficient cλ

µ,ν. The corresponding stretching function gkλ,kµ,kν =

ckλ
kµ,kν is well understood: it has been shown by Rassart, and Derksen and Weyman that

this stretching function is polynomial in k, and its degree has been studied by King et al.
The families g(k),(ka),(ka) and g(k),(2k−j,ka−1),(ka), with k ≥ 2j, with a and j fixed, are

considered by Colmenarejo and Rosas [5, 6]: they are quasi polynomials in k of degree
respectively 2a− 1 and 3a− 2.
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